
Measure Platform Developers Guide
Measurement and Data Analysis Platform

•

Extend the Measure Platform

The Measure platform can be extended in order to support new data sources, new ways to visualise collected

data or now data analysis services. The Measure Platform developers guide provides the required key to the

development of these extensions. The Platform can be extended as follows:

Development of New Measure

A Measure is a small and autonomous java program based on the SMM specification which allow to collect

measurements. The Measures make the link between a Measurement Tool, a Remote Service, a Captor or

any others kind of data sources and the Measure Platform.

If you plan to monitor measures that are not currently supported by the measure platform, you will probably

have to develop your own Measures.

There two kind of Measures:

• The Direct Measure (Collect of measurement in physical world), a Proxy (Ensure communication

between a Measurement Tool and the Platform) or

• The Derived Measure (Measure calculated by the aggregation of existing Measures).

Development of New Measurement Applications

An Application is a set of Measures aggregated together in order to address functional requirements. The

application is associated with a visual dashboard which directly integrated into the Decision-Making platform

when the Application is deployed on a project.

Development of New Analysis Service

In order to support a large set of analyses services and do not limit to it a specific technology, the Analysis

Tools are external processes. Although external, we wanted a deep integration between the platform and the

analysis tools. We solved this issue in the following way:

• The Measure platform provides a REST API which allows an analysis tool to register it on the platform,

to receive notification from the platform and access to information related to project defined and

measure collected by the platform.

• On its side, the analysis tool provides some web pages which will be embedded into the platform web

application.

Measure Development

Measure Architecture

A SMM Measure is a small and independent software component which allows retrieving or calculating a

measurement. The Measure make the link between a remote measurement or service and the

MeasurePlatform. The implementation of a measure is based on a library developed in parallel with the

Measure Platform: the “SMMMeasureApi”. We identify two main kinds of measures: The Direct Measures and

the Derived Measures.

• A Direct Measure is used to collect data in physical world. This kind of measure can be executed on

the platform on the Client Side. To define a Direct Measure, the IDirectMeasure has to be

implemented. This interface will be called by the Measure Platform to retrieve the measurements.

• A Derived Measure is used to define a combined measure which can calculate new measurements

using one or more measurements stored on the Measure platform. To define a Derived Measure, the

IDerivedMeasure has to be implemented.

In this section, we will describe how to specify, implement and package a new measure which will be deployed

on the Measure platform. The Modelio Modeling tool can be used for the specification, implementation and

packaging of measures, but it is also possible to implements the measure manually.

In SMM, a direct or derived measure definition is associated with an Operation which represents the

implementation of the measure. These operations can be expressed in natural language or may contain

executable code. In order to be able to collect direct measures and to execute calculated measure, we have

to choose a common executable language. For that, we currently support Java.

An SMM Measure is a zip file containing:

• A Jar file: The Java implementation of the measure

• A lib folder: Java libraries used by the measure implementation

• A MetaData.xml file: Metadata related to the measure

The Jar file contained the implementation the measure itself. In order to be executed by the platform, this

implementation is based on the SMMMeasureApi available at this URL:

https://github.com/ITEA3-Measure/SMMMeasureApi/

The metadata file is an xml file containing several information’s related to the measure and used by the

measure platform to load dynamically the Measure. It allows to define the scope (dynamic properties provided

wen the measure is deploy on a project of the Measure Platform) and the data model returned by the measure

when executed.

Develop a Measure Using Maven

In order to help you to start the development of a new Measure, a Maven Archetype is available on our Maven

repository: http://repository.modelio.org

https://github.com/ITEA3-Measure/SMMMeasureApi/
http://repository.modelio.org/

To create the implementation project form the Maven Archetype in
Eclipse:

• Create a new Maven project using an Archetype

• Register the Modelio maven repository as new remote
maven catalogue
http://repository.modelio.org

• Select the direct-measure-archetype Archetype or the
derived-measure-archetype Archetype depending of the
kind of measure you which to implement.

• A preconfigured maven development project dedicated to
measure is created

Use an existing project template which will allow you to start the implementation of a new measure is also

available at this address:

https://github.com/ITEA3-Measure/Measures/tree/master/_Examples/TemplateMeasure

Once the implementation of the measure is completed, you can package your measure as ZIP in a format

compatible with the Measure Platform using the Maven Install compilation target.

Develop a Measure using the Modelio Modelling Tool

The Modelio Modeling tool supports the Structured Metrics Model (SMM) standard. This specification defines

a meta-model for representing measurement information related to any model-based information with an initial

focus on software, its operation, and its design. Referred to as the Structured Metrics Meta-model (SMM), this

specification is an extensible meta-model for exchanging both measures and measurement information

concerning artefacts contained or expressed by structured models, such as MOF.

The SMMLibrary Module is an extension for Modelio 3.8 tool, which allows to model, specify, implement, and

package new catalogue of measures in SMM format.

1. Download the Modelio Open Source 3.8.0: https://www.modelio.org/downloads/download-
modelio.html

2. Download the last SMMDesigner Module: https://github.com/ITEA3-Measure/SMM-
Designer/releases/tag/1.0.00 Download file : SMM_1.0.00.jmdac

3. Start Modelio and create a new Project.
4. Add the SMM_1.0.00.jmdac module into the project

This module will allow you to:

• Specify scope, data model and dependency of the measure using Models

• Generate a Maven implementation project based on this specification.

• Help you to implement the measure using Model Driven Development Approach

• Package the measure in a format supported by the Measure Platform

Please refer to the documentation of the SMM Module for more details about the development of measures

using Modelio.

Measure Metadata File

The MetaData.xml file contains meta-data related to the SMM Measure:

• Name, description, category and provider of the Measure

• Type of the Measure

http://repository.modelio.org/
https://github.com/ITEA3-Measure/Measures/tree/master/_Examples/TemplateMeasure
https://www.modelio.org/downloads/download-modelio.html
https://www.modelio.org/downloads/download-modelio.html
https://github.com/ITEA3-Measure/SMM-Designer/releases/tag/1.0.00
https://github.com/ITEA3-Measure/SMM-Designer/releases/tag/1.0.00

• Unite (data model) of the measure

• List of properties of the measure

• List of references for Derived Measure (inputs form other measures)

• Defaults view descriptions associated with a measure.

Element Owner

Attribute Description

Measure

The Measure

name Name / Id of the Measure

type SMM Type of the measure:

[DIRECT,COLLECTIVE,RANCKING,GRADE,BINA

RY,COUNTING,ESCALED,RATIO]

category Classification of the measure by category

provider People / Entity which developed the measure

description Measure (1)

Description of the Measure

unite Measure (1)

Data Model of measurements returned by the

measure

fields Unite (*)

A Field of the measure unite

fieldName Name of the field

fieldType Type of the field:

[u_text,u_integer,u_long,u_date,u_boolean,u_float,

u_geo_point,...]

scopeProperties Measure (*)

A property user to configure the execution of the

measure

name Name of the property

defaultValue Default value of the property

type Type of the property:

:[STRING,INTEGER,FLOAT,DATE,ENUM,PASSW

ORD,DESABLE]

description scopeProperties

(1)

Description of the scope property

enumType scopeProperties

(1)

Emum definition for scopeProperties of type ENUM

enumvalue enumType (*)

Emum values

label label of the enum entry

value value of the enum entry

references Measure (*)

References to inputs required by Derived

Measures

measureRef Name of the required measure

number Default Number of instances of this input required

expirationDelay Filter old measurement

references-role References (1)

Role of impute in current Measurement. This role

allows to identify several instance of the same

Measure in a DerivedMeasure.

views Measure List of default visualisaiton

view Views(*) Default way to display measure data

 name Nane of the visualisation

 type Type of the visualisation:

[VALUE, TABLE, AREA,BAR,LIGNE,CUSTOM]

 default Indicate if this visualisation will be created

automatically when the measure is activated

[true,false]

 autoRefresh Indicate if this visualisation will be updated

periodicly

[true,false]

description view (1) Description of the visualisation

datasource view (1) Configure data display by the view

 dataIndex Unite fields display by the view

 dateIndex Date index used to collect view datas

 timePeriode Time period display by the view.

• Format: Number + Period

• Periode [m,h,d,w,M,Y]

Example : 1m = 1 minute

 timeAggregation Values display are average values of data on

specified period

[s,m,h,d,w,M,Y]

layout view (1) Layout configuration

 width with in pixel of the view

 height Height in pixel of the view

 color Color of the view :

Example : %23E24D42

 fontSize Font size of the view text

customData View (1) Custom View, see section dedicated to custom

visualisation in this documentation

Example of Measure Visualisations

dfgdfgdfgdfgd

Simple Value

<view name="Members" type="VALUE" default="true" autoRefresh="false">

 <datasource dataIndex="memeber" timePeriode="1y"/>

 <layout width="150" height="150" fontSize="60" color="#7EB26D" />

 </view>

Multiple Values

<view name="GitHub Organisation" type="VALUE" default="true" autoRefresh="false">

 <datasource dataIndex="name,creationdate,compagny,follower,following,memeber,public_repo"

timePeriode="1y"/>

 <layout width="500" height="260" fontSize="16" color="#DEDAF7" />

 </view>

Data Table

<view name="GitHub Issues" type="TABLE" default="true" autoRefresh="false">

 <description>Commits</description>

 <datasource dataIndex="UpdatedAt,Title,Body,State,Author,ClosedAt,ClosedBy"

dateIndex="UpdatedAt" timePeriode="2y"/>

 <layout width="1380" height="600" fontSize="10" color="#ffadad" />

</view>

Area Chart

<view name="Random Measure" type="AREA" default="true" autoRefresh="true">

 <description>Random Value By Seconde</description>

 <datasource dataIndex="value" dateIndex="postDate" timePeriode="1m" timeAggregation="s"/>

 <layout width="400" height="300" color="%23E24D42" />

</view>

Bar Chart

<view name="Random Measure" type="BAR" default="true" autoRefresh="true">

 <description>Random Value By Seconde</description>

 <datasource dataIndex="value" dateIndex="postDate" timePeriode="1m" timeAggregation="s"/>

 <layout width="400" height="300" color="%23E24D42" />

</view>

Ligne Chart

<view name="Random Measure" type="LIGNE" default="true" autoRefresh="true">

 <description>Random Value By Seconde</description>

 <datasource dataIndex="value" dateIndex="postDate" timePeriode="1m" timeAggregation="s"/>

 <layout width="400" height="300" color="%23E24D42" />

</view>

Custom View

The custom views are default measure visualisation created from custom kibana Visualisation. This view are

created form Kibana Embeded URL which has bean made customizable and encoded to store it in the

MetaData XML file.

Custom View

<view name="Repository Activity" default="true">

 <description>Repository Activity</description>

 <datasource timePeriode="60d"/>

 <layout width="450" height="450"/>

 <customData>PGlmcmFtZSBzcmM9Imh0dHA6Ly97UExBaWZyYW1lPg==</customData>

</view>

To define a custom view :

• Using Kibana visualisation tool, create your own visualisation based on dataforce from the

measure in development

• Export this view as “Embeded Code” URL.

• In the URL , replace static values listed below by parameters.

• Encode the string using a standard Base64 encoder like https://www.base64encode.org/

• Copy this encoded string in <customData></customData> tag of the metadata file.

Value Parameter

<iframe src="http://{PLATFORM_URL}/app/ {PLATFORM_URL}

&indexPattern={PLATFORM_INDEX} {PLATFORM_INDEX}

,time:({PLATFORM_TIMEPERIODE})) {PLATFORM_TIMEPERIODE}

height="{PLATFORM_HEIGHT }" {PLATFORM_HEIGHT

width="{PLATFORM_WIDTH}" {PLATFORM_WIDTH}

Example of a MeasureMetaData.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Measure name="RandomMeasure" type="DIRECT" category=”Test” provider=”MeasurePlatform”>
 <description>Return a random measure and his variation</description>

https://www.base64encode.org/

 <scopeProperties defaultValue="100" name="MaxRange" type="INTEGER">
 <description>MaxRange</description>
 </scopeProperties>
 <scopeProperties defaultValue="0" name="MinRange" type="FLOAT">
 <description>MinRange</description>
 </scopeProperties>
 <scopeProperties defaultValue="0" name="PreviousValue" type="DESABLE">
 <description>PreviousValue</description>
 </scopeProperties>
 <scopeProperties defaultValue="Borned" name="Kind" type="ENUM">
 <description>Kind</description>
 <enumType>
 <enumvalue label="Is Borrned" value="Borned"/>
 <enumvalue label="Not Borrned" value="UnBorned"/>
 </enumType>
 </scopeProperties>
 <scopeProperties name="TestDate" type="DATE">
 <description>TestDate</description>
 </scopeProperties>
 <scopeProperties name="TestPassword" type="PASSWORD">
 <description>TestPassword</description>
 </scopeProperties>
 <scopeProperties name="TestString" type="STRING">
 <description>TestString</description>
 </scopeProperties>
 <unit name="RandomMeasurement">
 <fields fieldName=" value" fieldType="u_double"/>
 <fields fieldName="variation" fieldType="u_integer"/>
 <fields fieldName=" postDate" fieldType="u_date"/>
 </unit>
 <views>
 <view name="Random Measure" type="AREA" default="true" autoRefresh="true">
 <description>Random Value By Seconde</description>
 <datasource dataIndex="value" dateIndex="postDate" timePeriode="1m"
timeAggregation="s"/>
 <layout width="400" height="300" color="%23E24D42" />
 </view>
 </views>
</Measure>

Direct Measure Implementation

A direct measure is used to collect data in physical world. This kind of measure can be executed on the platform

on Client Side. To define a Direct Measure, implement the IDirectMeasure interface. This interface will be

called by the MeasurePlatform to retrieve the measurements.

public interface IDirectMeasure {
 public List<IMeasurement> getMeasurement() throws Exception;
 public Map<String,String> getProperties();
}

To implement a direct measure, please extend the DirectMeasure class:

• getMeasurement(): calculates and returns a list of measurements.

• getProperties(): provides a way for the Measure platform to communicate properties to
DirectMeasure implementation.

Example: RandomGenerator, a toy measure which returns a random number between MinRange and
MaxRange value at each call.

public class RandomGenerator extends DirectMeasure {

 @Override
 public List<IMeasurement> getMeasurement() throws Exception {
 List<IMeasurement> result = new ArrayList<>();

 // Retrive Platform Properties by her name
 int maxRange = Integer.valueOf(getProperty("MaxRange"));
 int minRange = Integer.valueOf(getProperty("MinRange"));

 // Collect Measure
 Random gen = new Random();
 int value = gen.nextInt(maxRange - minRange) + minRange;

 // Create Measurement : In this case, a simple IntegerMeasurement
 IntegerMeasurement measurement = new IntegerMeasurement();
 measurement.setValue(value);
 result.add(measurement);
 return result;
 }
}

Derived Measure implementation

A derived measure is used to define a combined measure which calculates new measurements using one or

more measurements stored on the Measure platform. To define a derived measure, implement the

IDerivedMeasure interface. This interface will be called by the Measure Platform to calculate the measurement.

public interface IDerivedMeasure {
 public List<IMeasurement> calculateMeasurement() throws Exception;
 public void addMeasureInput(String reference,String role, IMeasurement value);
 public Map<String,String> getProperties();
}

To implement a derived measure, please extend the DerivedMeasure class:

• calculateMeasurement(): Calculate and return a list of measurements based on provided
measurement imputs.

• addMeasureInput(): Provide a way for the Measure Platform to communicate input measurements
to the DerivedMeasure implementation.

• getProperties(): Provide a way for the Measure Platform to communicate properties to the Derived
Measure implementation.

A Derived Measure allows to combine measurement provided by other measures (Direct or Derived). Required

inputs measure are defined on the MetaData.xml. These references are identified by a measureRef and a

role.

• The measureRef is the id of the measure which can provide a measurement as input.

• The role is the role of the imput in current measurement. This role allows to identify several
instances of the same measure of a Derived Measure.

• The expirationDelay property allows to filter as input the measures which has been calculated
recently

• The number property allows to select the number of inputs of this type which will be communicated
to the derived measure implementation by the platform.

 <references expirationDelay="60000" measureRef="RandomGenerator" number="1">
 <role>RandomNumber A</role>
 </references>
 <references expirationDelay="60000" measureRef="RandomGenerator" number="1">
 <role>RandomNumber B</role>
 </references>

Inputs are defined when an instance on the measure is deployed on the Measure Platform.

Example: RandomBinaryMeasure, a toy measure which returns the result of a binary operation between
two RandomGenerator result

public class RandomBinaryMeasure extends DerivedMeasure {

 @Override

 public List<IMeasurement> calculateMeasurement() {
 Integer result = 0;

 // Retrive input Measurements by her Role
 List<IMeasurement> op1 = getMeasureInputByRole("RandomNumber A");
 List<IMeasurement> op2 = getMeasureInputByRole("RandomNumber B");

 // Calculate result
 if(op1.size() == 1 && op2.size() == 1){
 String oper = "+";

 // Retrive the operator as Property
 oper = getProperty("Operation");

 Integer val1 = (Integer) op1.get(0).getValues().get("value");
 Integer val2 = (Integer) op2.get(0).getValues().get("value");

 if(oper.equals("+")){
 result = val1 + val2;
 }else if(oper.equals("-")){
 result = val1 - val2;
 }else if(oper.equals("*")){
 result = val1 * val2;
 }else if(oper.equals("/")){
 result = val1 / val2;
 }
 }

 // Return result as new IntegerMeasurement
 IntegerMeasurement measurement = new IntegerMeasurement();
 measurement.setValue(result);

 List<IMeasurement> measurements = new ArrayList<>();
 measurements.add(measurement);

 return measurements;
 }
}

Example: RandomSumMeasure, a toy measure which returns the sum of measurements provided by the
RandomGenerator measure.

public class RandomSumImpl extends DerivedMeasure {
 @Override
 public List<IMeasurement> calculateMeasurement() throws Exception {
 Integer result = 0;
 for (IMeasurement operande : getMeasureInputByRole("RandomNumber")) {
 try {
 result = result + (Integer) operande.getValues().get("value");
 } catch (NumberFormatException e) {
 System.out.println("Non Numeric Operande");
 }
 }

 IntegerMeasurement measurement = new IntegerMeasurement();
 measurement.setValue(result);

 List<IMeasurement> measurements = new ArrayList<>();
 measurements.add(measurement);
 return measurements;
 }
}

Measurement

A Measurement is a data model used as input and output of SMM measure. A measurement has to extend

the IMeasurement interface. A measurement is presented as set of Java elements which can be accessed via

a Map. All values are accessed using a String identifier defined in MetaData.xml file.

public interface IMeasurement {
 public Map<String, Object> getValues();
 public String getLabel();
}

Predefined Measurements: The API provides some predefined measurements which can be used in the

measure implementation

• IntegerMeasurement: allows to manipulate numbers in the measure implementation

int value = 10;
IntegerMeasurement measurement = new IntegerMeasurement();
measurement.setValue(value);

Custom Measurements Example: A Measure developer can define custom measurements to manage her

own set of data.

The SVNMeasurement is used by a measure which collects COMMIT information provided by an SVN

repository. It manages data related to the author of the commit, the message on the commit and the date of

the commit.

public SVNMeasurement(String author,String message,Date postDate){
 super();
 this.valueMap.put("Author", author);
 this.valueMap.put("Message", message);
 this.valueMap.put("postDate",new Date(postDate.getTime()));
}

Measures Example

More than 200 measures are available on open source on the GitHub of the Measure project:

https://github.com/ITEA3-Measure/Measures

Measurement Application Development

A Measurement Application is a set of measure packaged together to address a clearly defined functional Goal

and, when deploy, provide an auto configures dashboard. An application can be deployed on Measure Plaform

like others measures.

Measurement Application

Application

MetaData File

Measure 1

Measure 2

Measure 3

https://github.com/ITEA3-Measure/Measures

• When the application is deployed on the project, the measure which compose the application are

instantiate in a transparent way for the end user

• When the application is activated, the measure which compose the application are collected and a

specific dashboard is created

• This specific dashboard is composed form defaults visualisation packaged in the different sub

measures.

It is recommended to collect metrics in one application covering the same functional spectrum, or even the

same tools. When the application is deployed the list of parameters required to deploy it on a project is the

sum of the parameters of the metrics which compose the application. If two metrics have a parameter with the

same name, it’s considered as the same parameter.

ApplicationMetadata.xml File

The ApplicationMetadata file contain information’s related to the list of metrics involved on this application and

specification of the composition of dashboards provided by this application.

Element Owner

Attribute Description

Application

The Application

name Name / Id of the Application

provider The developer of the application

description Application (1)

Description of the Application

measures Application (1) List of measures which composed the application

measure measures (*) A measures which composed the application

 name Name of the Measure

 scheduling Int representing the interval of time between two

execution of the measure

 schedulingUnit Unite of scheduling periode (s=Seconde,…)

[s,m,h,d,w,M,Y]

dashboards Application (1) List of dashboards provided by the application

dashboard dashboards (*) A dashboard provided by the application

 label Label of the dashboard

view dashboard (*) View include in the dashboard

 measure Name of the measure which provide the view

 view Name of the view to include in the dashboard

Example of ApplicationMetadata.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Application name="GitHubRepository" provider="Softeam">

 <description>Monitoring of a GitHub repository including commits supervision and issue

traking</description>

 <measures>

 <measure name="GitHubCommit" scheduling="10" schedulingUnit="m"/>

 <measure name="GitHubIssue" scheduling="10" schedulingUnit="m"/>

 <measure name="GitHubIssueStat" scheduling="10" schedulingUnit="m"/>

 <measure name="GitHubRepository" scheduling="10" schedulingUnit="m"/>

 </measures>

 <dashboards>

 <dashboard label="GitHub Repository">

 <view measure="GitHubRepository" view="Name"/>

 <view measure="GitHubRepository" view="Owner"/>

 <view measure="GitHubRepository" view="LastUpdate"/>

 <view measure="GitHubRepository" view="Language"/>

 <view measure="GitHubRepository" view="Stars"/>

 <view measure="GitHubRepository" view="Suscribers"/>

 <view measure="GitHubRepository" view="Forks"/>

 <view measure="GitHubRepository" view="Branches"/>

 <view measure="GitHubCommit" view="Commits History"/>

 <view measure="GitHubCommit" view="Repository Activity"/>

 <view measure="GitHubCommit" view="Commits By Users"/>

 <view measure="GitHubCommit" view="Commits"/>

 </dashboard>

 <dashboard label="Issus">

 <view measure="GitHubIssueStat" view="Issues"/>

 <view measure="GitHubIssueStat" view="Average Open Duration"/>

 <view measure="GitHubIssue" view="GitHub Issues"/>

 </dashboard>

 </dashboards>

</Application>

Application Packaging

A Measurement Application is packaged as a zip containing:

• The ApplicationMetaData.xml file

• Unziped measures which compose the application

Analysis Tool Development

The main objective of the analysis platform is to implement analytics algorithms, to correlate the different

phases of software development and perform the tracking of metrics and their value. The platform also

connects and assure interoperability among the tools and define actions for improvement and possible

countermeasures.

Integration Mechanism of Analysis Tool into

In order to ensure the integration of various kind of analysis tool into the measure platform, the Analysis

component provide an integration mechanism of external tool to register it into the measure platform, to access

to measurement data, to received notification form the platform and finally to provide analysis results. This

integration is based on a set of REST services used to manage communication between analysis Tools and

the Platform.

Figure 1 : Registration process of an external analysis tool into the platform

• Registration: At start-up of the Analysis Tool, it must register itself to the platform using the Registration

service. This would allow the project to activate the analysis tools.

Registration Rest Service:

PUT /api/analysis/register

Input Data (json) {

 "configurationURL": "string",

 "description": "string",

 "name": "string"

}

• Wait for Notifications: The Analysis Tool must listen to notifications from the platform in order to know

when a project requests the usage of the analysis tool. The notification (Alert) system is based on pooling

system. The Analysis tool pool the platform periodically using the alert service to received notifications.

The Platform send several kinds of notifications listed below:

Alert Type Description Properties

ANALYSIS_ENABLE A Project sends an activation request

for the Analysis Tool. It's not required

for analysis tool to subscribe to this

alert, the subscription is automatic.

• ANALYSISID: Id of the

instance of analysis

associated with this request

on platform side

ANALYSIS_DESABLE A Project indicate that the analysis

service is not required anymore. It's not

required for analysis tool to subscribe to

this alert, the subscription is automatic.

• ANALYSISID: Id of the

instance of analysis

associated with this request

on platform side.

MEASURE_ADDED A new Measure is added the the project • MEASUREID: Id of the

Measure

MEASURE_REMOVED A Measure is removed from the project • MEASUREID: Id of the

Measure

MEASURE_SCHEDULED A Measure is not collected periodically

for the project

• MEASUREID: Id of the

Measure

MEASURE_UNSCHEDULED A Measure is not collected anymore by

the project

• MEASUREID: Id of the

Measure

By default, all register project subscribe automatically to ANALYSIS_ENABLE and ANALYSIS_DESABLE

Notifications.

Retrieve Platform Alerts REST Service: This service retrieves the alerts form the platform for a specific

analysis tool

GET /api/analysis/alert/list/{AnalysisToolName}

Parameter AnalysisToolName : Name of the Analysis Tool (provided in

registration service)

Output Data (json) {

 "alerts": [

 {

 "alertType": "string",

 "projectId": 0,

 "properties": [

 {

 "property": "string",

 "value": "string"

 }

]

 }

],

 "from": "2018-03-13T12:16:33.164Z"

}

• Configure Analysis: When a project activates an analysis tool, the analysis tool must configure it for the

project and provide URLs for the project-specific configuration page, the project main view and optionally

the dashboard cards.

Configuration REST Service

Warning: The analysis configuration input data required a projectAnalysisId. This id is provided by the platform

as properties of the ANALYSIS_ENABLE and ANALYSIS_DESABLE notification message.

PUT /api/analysis/configure

Input Data (json) {

 "cards": [

 {

 "cardUrl": "string",

 "label": "string",

 "preferedHeight": 0,

 "preferedWidth": 0

 }

],

 "configurationUrl": "string",

 "projectAnalysisId": 0,

 "viewUrl": "string"

}

• Analyse the Project: When configured, the analysis tool can start its analysis work for the specific

project. In order to perform this work, the analysis tool can explore the project configuration using the

various services provided by the Measure platform. It can also configure new Alerts to receive

notifications when the project configuration has changed.

Alert Subscription REST Service: This service allows an analysis tool to subscribe to a new alert related to

a specific project

PUT PUT /api/analysis/alert/subscribe

Input Data (json) {

 "analysisTool": "string",

 "eventType": "ANALYSIS_ENABLE",

 "projectId": 0,

 "properties": [

 {

 "property": "string",

 "value": "string"

 }

]

}

Alert Unsubscribe REST Service : This service allows the analysis tool to unsubscribe to an alert.

PUT PUT /api/analysis/alert/unsubscribe

Input Data (json) {

 "analysisTool": "string",

 "eventType": "ANALYSIS_ENABLE",

 "projectId": 0,

 "properties": [

 {

 "property": "string",

 "value": "string"

 }

]

}

User Interface integration using Embedded View

In order to integrate deeply the analysis tool to the Measure Platform, the analysis tools have to provide some

web pages which will be embedded to the platform web application. Each of these views are defined on the

platform side by a specific URL. For project specific views, this URL is different for each project. You will see

below the list of view which can be provided by the analysis tool and embedded into the Measure Platform.

• Global Configuration Page (optional): If the analysis tool requires a way to provide some

configuration interface which will be shared by all project, it can provide a global configuration

web page.

• Project Specific Analysis Configuration page: Configuration page which are specific for each

project. This page is embedded into project configuration page and allow to configure the analysis

service provided by the external analysis tool.

Figure 2 : Analysis tool configuration page of Quality Guard Analysis tool

• Analysis Tool Main View: Main view of the analysis tool which are specific for each project. In

this view, the analysis service.

Figure 3 : Main view of the Quality Guard Analysis Tool

• Dashboard Card: Optional small view which can be integrated to projects dashboards in order to

provide some key information to project managers related to the service provided by the analysis

tool.

Platform Querying Services

The platform provides several other services which can be used by the analysis tools to retrieve platform and

project configurations data, information related to measures and measurements and more.

The list of available services can be consulted via Swagger directly on deployed Measure platform. To access

this specification, one must be connected as Administrator to the platform. The complete API specification is

available on Administration > API menu

Some example of available HTTP services:

• GET /api/measure/findall : List all measures

• GET /api/measure/{id} : information related to a specific measure

• GET /api/measure-properties/{id} : List of scope properties associated with one measure

• GET /api/projects : List all projects

• GET /api/projects/{id} : Information related to a specific project

• GET /api/phases/byproject/{id} : Get phases of a specific project

• GET /api/phases/{id} : Information of a specific phase

• GET /api/measure-instances : List of all measure instances

• GET /api/measure-instances/{id} : Information of a specific measure instance

• GET /api/project-measure-instances/{id} : List of measure instances of a specified project

• GET /api/measure-instance/scheduling/execute/{id} : Execute a specific measure

• GET /api/measure-instance/scheduling/start/{id} : Activate scheduling of a specific measure

• GET /api/measure-instance/scheduling/stop/{id} : Deactivate scheduling of a specific measure

Run Measure Platform From Source

The measure platform is an open source product. The current section of the documentation present how to

run the platform in developer mode from source.

Prerequisites

The Measure Platform can be executed both on Linux or Windows systems. For that, the platform requires the

installation of: MySQL, Elasticsearch, Kibana and Java 1.8.

MySQL Installation

• Download MySQL Community Server 5.7 or above : https://dev.mysql.com/downloads/mysql/

• Install MySQL using the folloing instruction :
https://dev.mysql.com/doc/refman/5.7/en/installing.html

• Create a new database named "measureplatform".

Elasticsearch Installation

• Downloade Elasticsearch 5.6 (as zip): https://www.elastic.co/downloads/elasticsearch

• Unzip the application in your tool directory.

Kibana Installation

• Downloade Kibana v 5.6 (as zip): https://www.elastic.co/downloads/kibana

• Unzip the application in your tool directory.

Java 1.8 Installation

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana

• Download and install the jdk8 in youe environment:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Eclipse IDE

• Download and install the last version of Eclipse IDE for Java EE Developers:
https://www.eclipse.org/downloads/eclipse-packages/

Retrieve the MeasurePlatform Source Code

The Measure Platform source code is hosted on GitHub. To retrieve it, you can:

• Download it as zip file : https://github.com/ITEA3-Measure/MeasurePlatform

• Clone the Git repository
o Install git: https://git-scm.com/downloads
o Clone the repository: git clone https://github.com/ITEA3-

Measure/MeasurePlatform.git

You can now import the Measure Platform as a new Maven project in Eclipse.

Start the Application in developers Mode

1. Start MySQL
2. Start Elasticsearch : ./elasticsearch-5.4.0/bin/elasticsearch
3. Start Kibana:./kibana-5.4.0/bin/kibana
4. Start the Measure platform:

• From Eclipse IDE: Select the "MeasurePlatformApp.java" file and Right Click > Run as > Java
Application

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/eclipse-packages/
https://github.com/ITEA3-Measure/MeasurePlatform
https://git-scm.com/downloads

